本书主要包含四部分内容,侧重于从能源领域工程实际和科学研究的需求角度出发,阐述用人工智能大数据方法解决能源系统问题的知识和方法论。第一部分介绍能源系统信息采集中常见数据类型及数据预处理方法,包括适用于能源系统的异常值识别、缺失值处理、数据规范化、数据转换及分割方法等;第二部分介绍无监督学习方法及其在能源系统工程中的典型应用,包括聚类分析、关联规则挖掘和知识后挖掘方法;第三部分介绍监督学习方法及其在能源系统预测建模中的应用要点,包括特征工程、算法选择、模型优化和模型解读方法;第四部分介绍能源系统优化方法,主要从评价指标、建模方法和优化算法等方面讲述能源系统在设计和运行阶段的优化思路及案例。 本书可作为高等院校能源系统工程和人工环境工程等专业与人工智能领域相结合的跨学科专业教材,也可以作为工程技术人员和管理人员的参考读物。
本书主要包含四部分内容,侧重于从能源领域工程实际和科学研究的需求角度出发,阐述用人工智能大数据方法解决能源系统问题的知识和方法论。第一部分介绍能源系统信息采集中常见数据类型及数据预处理方法,包括适用于能源系统的异常值识别、缺失值处理、数据规范化、数据转换及分割方法等;第二部分介绍无监督学习方法及其在能源系统工程中的典型应用,包括聚类分析、关联规则挖掘和知识后挖掘方法;第三部分介绍监督学习方法及其在能源系统预测建模中的应用要点,包括特征工程、算法选择、模型优化和模型解读方法;第四部分介绍能源系统优化方法,主要从评价指标、建模方法和优化算法等方面讲述能源系统在设计和运行阶段的优化思路及案例。 本书可作为高等院校能源系统工程和人工环境工程等专业与人工智能领域相结合的跨学科专业教材,也可以作为工程技术人员和管理人员的参考读物。
随手扫一扫~了解多多