配套资源:全套教学课件、教学大纲、授课计划、数据集、源代码
本书特色:
聚焦大数据关键技术要点,详解数据采集与数据预处理理论与技术
介绍主流数据采集工具(Flume、Kafka、日志易、Scribe、Scrapy框架等),及主流数据预处理工具(Python、Kettle、Pig、OpenRefine)的应用
本书教学资源,样书可添加小编微信13146070618索取
本书重点介绍了数据采集和数据预处理的相关理论与技术。全书共9章,主要包括数据采集与预处理概述,大数据开发环境的搭建,使用Flume采集系统日志数据,使用Kafka采集系统日志数据,其他常用的系统日志数据采集工具,使用网络爬虫采集Web数据,Python数据预处理库的使用,使用ETL工具Kettle进行数据预处理,以及其他常用的数据预处理工具。本书在第2章至第9章安排了丰富的实践操作,实现了理论与实践的有机结合,帮助读者更好地学习和掌握数据采集与预处理的关键技术。 本书可以作为高等院校大数据专业的大数据课程教材,也可以作为计算机相关专业的专业课或选修课教材,同时也可以作为从事大数据相关专业的工作人员的参考用书。
配套资源:全套教学课件、教学大纲、授课计划、数据集、源代码
本书特色:
聚焦大数据关键技术要点,详解数据采集与数据预处理理论与技术
介绍主流数据采集工具(Flume、Kafka、日志易、Scribe、Scrapy框架等),及主流数据预处理工具(Python、Kettle、Pig、OpenRefine)的应用
本书教学资源,样书可添加小编微信13146070618索取
本书重点介绍了数据采集和数据预处理的相关理论与技术。全书共9章,主要包括数据采集与预处理概述,大数据开发环境的搭建,使用Flume采集系统日志数据,使用Kafka采集系统日志数据,其他常用的系统日志数据采集工具,使用网络爬虫采集Web数据,Python数据预处理库的使用,使用ETL工具Kettle进行数据预处理,以及其他常用的数据预处理工具。本书在第2章至第9章安排了丰富的实践操作,实现了理论与实践的有机结合,帮助读者更好地学习和掌握数据采集与预处理的关键技术。 本书可以作为高等院校大数据专业的大数据课程教材,也可以作为计算机相关专业的专业课或选修课教材,同时也可以作为从事大数据相关专业的工作人员的参考用书。
随手扫一扫~了解多多