本书较全面地介绍了数字图像处理的基础理论、经典算法及典型应用。本书内容包括数字图像处理基础知识、图像增强、图像复原、图像的几何变换与几何校正、形态学图像处理、图像分割、图像描述与特征提取等,并通过一个较完整的车牌识别系统向读者详细介绍了数字图像处理系统的基本设计思想与设计方法。本书实践部分介绍了OpenCV、NumPy、Matplotlib、Scikit-learn等图像处理相关工具包的常用方法,其中的代码汇集生成了“基于Python的图像处理算法演示系统v1.0”,以辅助读者理解算法。为适应人工智能等新技术的发展,本书简单介绍了卷积神经网络的平移、旋转、尺度缩放、形变等不变性,让读者理解卷积神经网络在图像处理方面的优势。 本书编者在编写过程中,收集整理了大量经典的图像处理算法,引入了新的图像处理技术,全书的例题在Python环境下均通过了调试。本书可作为普通高校电子信息、人工智能、计算机等专业的教材,也适合各类培训班作为教材使用。 本书配有以下教学资源:电子课件,习题答案,示例代码和对应的素材,图像处理算法演示系统。欢迎选用本书作教材的教师发邮件到jinacmp@163.com或登录www.cmpedu.com 注册下载。
本书较全面地介绍了数字图像处理的基础理论、经典算法及典型应用。本书内容包括数字图像处理基础知识、图像增强、图像复原、图像的几何变换与几何校正、形态学图像处理、图像分割、图像描述与特征提取等,并通过一个较完整的车牌识别系统向读者详细介绍了数字图像处理系统的基本设计思想与设计方法。本书实践部分介绍了OpenCV、NumPy、Matplotlib、Scikit-learn等图像处理相关工具包的常用方法,其中的代码汇集生成了“基于Python的图像处理算法演示系统v1.0”,以辅助读者理解算法。为适应人工智能等新技术的发展,本书简单介绍了卷积神经网络的平移、旋转、尺度缩放、形变等不变性,让读者理解卷积神经网络在图像处理方面的优势。 本书编者在编写过程中,收集整理了大量经典的图像处理算法,引入了新的图像处理技术,全书的例题在Python环境下均通过了调试。本书可作为普通高校电子信息、人工智能、计算机等专业的教材,也适合各类培训班作为教材使用。 本书配有以下教学资源:电子课件,习题答案,示例代码和对应的素材,图像处理算法演示系统。欢迎选用本书作教材的教师发邮件到jinacmp@163.com或登录www.cmpedu.com 注册下载。
随手扫一扫~了解多多