配套资源:源代码、教学课件、语料集、教学大纲、课后习题答案、程序安装包
获奖情况:
以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握数据分析的各类工具和库,了解传统机器学习的基本流程。
采用基于Python语言相关的分析库,便于学生更快地掌握数据分析和机器学习的基本思想,快速入门。
基于Sklearn介绍了数据挖掘的相关算法。
本书教学资源,样书可添加小编微信13146070618索取
本书包括两部分内容,第壹部分重点介绍了与Python语言相关的数据分析 工具,包括NumPy、Matplotlib、Pandas、Scipy、Seaborn和Sklearn。第二部分介绍数据处理、特征工程、评价指标、线性模型、支持向量机、K近邻算法、朴素贝叶斯、决策树、K-Means算法和文本分析实例。附录提供了课程教学大纲和 部分课后习题答案。 本书内容精练、文字简洁、结构合理、实训题目经典实用、综合性强、定位明确,面向初、中级读者,由“入门”起步,侧重“提高”。特别适合作为高等院校相关专业数据分析与机器学习课程的入门教材或教学参考书,也可以供从事计算机应用开发的各类技术人员参考。
配套资源:源代码、教学课件、语料集、教学大纲、课后习题答案、程序安装包
获奖情况:
以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握数据分析的各类工具和库,了解传统机器学习的基本流程。
采用基于Python语言相关的分析库,便于学生更快地掌握数据分析和机器学习的基本思想,快速入门。
基于Sklearn介绍了数据挖掘的相关算法。
本书教学资源,样书可添加小编微信13146070618索取
本书包括两部分内容,第壹部分重点介绍了与Python语言相关的数据分析 工具,包括NumPy、Matplotlib、Pandas、Scipy、Seaborn和Sklearn。第二部分介绍数据处理、特征工程、评价指标、线性模型、支持向量机、K近邻算法、朴素贝叶斯、决策树、K-Means算法和文本分析实例。附录提供了课程教学大纲和 部分课后习题答案。 本书内容精练、文字简洁、结构合理、实训题目经典实用、综合性强、定位明确,面向初、中级读者,由“入门”起步,侧重“提高”。特别适合作为高等院校相关专业数据分析与机器学习课程的入门教材或教学参考书,也可以供从事计算机应用开发的各类技术人员参考。
随手扫一扫~了解多多