配套资源:电子课件、案例程序源代码、案例数据集
本书特色:
系统介绍Python用于机器学习的数据分析、机器学习、数据可视化相关库。
结合大量实例透彻讲解各类机器学习算法在数据建模、数据分析中的应用。
全彩呈现数据建模可视化图像,提供配套数据集、源代码、PPT等学习资源。
本书教学资源,样书可添加小编微信13146070618索取
本书采用理论与实践相结合的方式,引导读者以Python为工具,以机器学习为方法,进行数据的建模与分析。本书共13章,对机器学习的原理部分进行了深入透彻的讲解,对机器学习算法部分均进行了Python实现。除前两章外,各章都给出了可实现的实践案例,并全彩呈现数据可视化图形。 本书兼具知识的深度和广度,在理论上突出可读性,在实践上强调可操作性,实践案例具备较强代表性。随书提供全部案例的数据集、源代码、教学PPT、关键知识点,教学辅导视频,具备较高实用性。 本书既可以作为数据分析从业人员的参考书,也可作为高等院校数据分析、机器学习等专业课程的教材。 扫描关注机械工业出版社计算机分社官方微信订阅号—身边的信息学,回复67490即可获取本书配套资源下载链接。
配套资源:电子课件、案例程序源代码、案例数据集
本书特色:
系统介绍Python用于机器学习的数据分析、机器学习、数据可视化相关库。
结合大量实例透彻讲解各类机器学习算法在数据建模、数据分析中的应用。
全彩呈现数据建模可视化图像,提供配套数据集、源代码、PPT等学习资源。
本书教学资源,样书可添加小编微信13146070618索取
本书采用理论与实践相结合的方式,引导读者以Python为工具,以机器学习为方法,进行数据的建模与分析。本书共13章,对机器学习的原理部分进行了深入透彻的讲解,对机器学习算法部分均进行了Python实现。除前两章外,各章都给出了可实现的实践案例,并全彩呈现数据可视化图形。 本书兼具知识的深度和广度,在理论上突出可读性,在实践上强调可操作性,实践案例具备较强代表性。随书提供全部案例的数据集、源代码、教学PPT、关键知识点,教学辅导视频,具备较高实用性。 本书既可以作为数据分析从业人员的参考书,也可作为高等院校数据分析、机器学习等专业课程的教材。 扫描关注机械工业出版社计算机分社官方微信订阅号—身边的信息学,回复67490即可获取本书配套资源下载链接。
随手扫一扫~了解多多